
Practical C
Learn by Doing Debugging

Tyler
deepcode.solutions
April 15, 2024

Outline

1 Expectations

2 History of C

3 Project Introduction

4 C Language Primer

5 C Techniques Primer

6 C Tooling Primer

7 Project Specification

Expectations

The only way to get better at writing code is to write code.

An expert C programmer knows the theory and how to apply it.

Mastery often takes years, if not decades.

Most of an expert’s learning is self-study.

We will bootstrap your self-study by covering the fundamentals of C.

History of C

Dennis Ritchie created C around 1972; the language is now 52 years old.

Developed on the PDP-11.

Bootstrap compiler written in assembly.

Used to develop operating systems, then systems programs.

Standards: K&R C (1978), ANSI C (1989), C99, C11, C17, C23.

Dennis Ritchie (standing), Ken Thompson.

PDP-11/20:
- 32 KB - 4 MB RAM
- No clock, everything tuned to bus speed
- Floppy disk, platter hard disk, tape

Teletype 33 terminal: paper output.

See a similar computer in action here.

History of C

source

https://www.youtube.com/watch?v=N17wbg80xUM
https://www.bell-labs.com/usr/dmr/www/picture.html

Probably used something like a VT05 when
making C.

History of C

source

https://en.wikipedia.org/wiki/VT05
https://en.wikipedia.org/wiki/VT05

Project Introduction

We’ll make a calculator, but not just any calculator.

Project Introduction

0 -20 + 5 / source code

Lexer

Bytecode Generator

compiler

[0,
-20,

 +,
5, /

]

(0x) 0000401480010005… bytecode

$ vm prog.bin

-4

virtual machine

prog
.bin

prog
.dsm

l

Project Introduction

So we’ll actually make a virtual machine and toolchain.

C Language Primer

1. Initial Tooling
2. main
3. The Preprocessor
4. Data Types
5. Printing
6. Functions
7. Pointers
8. Strings
9. The Second Form of main

10. Structures
11. Memory Allocation and Management
12. Multiple Source Files

C Language Primer – Initial Tooling

C is a compiled language, meaning it requires a tool called a compiler to transform
source code into machine code.

Popular compiler choices are gcc and clang.

int main(void) {
 return 0;
}

main:
.LFB0:
 .cfi_startproc
 endbr64
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 movl $0, %eax
 popq %rbp
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
; etc.

457f 464c 0102 0001 0000 0000 0000 0000
0003 003e 0001 0000 1040 0000 0000 0000
0040 0000 0000 0000 3b78 0000 0000 0000
0000 0000 0040 0038 000d 0040 0022 0021
0006 0000 0004 0000 0040 0000 0000 0000
0040 0000 0000 0000 0040 0000 0000 0000
02d8 0000 0000 0000 02d8 0000 0000 0000
0008 0000 0000 0000 0003 0000 0004 0000
0318 0000 0000 0000 0318 0000 0000 0000
0318 0000 0000 0000 001c 0000 0000 0000
001c 0000 0000 0000 0001 0000 0000 0000
0001 0000 0004 0000 0000 0000 0000 0000
...

source code assembly machine code

C Language Primer – Initial Tooling

Q Why would a compiler convert source code to assembly instead of directly to
machine code?

C Language Primer – main

The C standard declares a special function called main which is the designated
entrypoint to your code (in most cases).

There are multiple possible signatures. We will focus on one for now.

int main(void);

C Language Primer – main

Let’s write your first C program.

int main(void) {
 return 0;
}

$ <editor> main.c
$ clang main.c
$./a.out
$ echo $?

C Language Primer – The Preprocessor

A typical hello-world program might be:

#include <stdio.h>

int main(void) {
 printf("hello, world\n");
 return 0;
}

Compile and run this program.

C Language Primer – The Preprocessor

Q Remove the #include <stdio.h> line and recompile. What happens?

C Language Primer – The Preprocessor

#include is replaced with the contents of stdio.h as if you had typed the
content into main.c yourself.

The mechanism powering #include is called the preprocessor.

The preprocessor has more features such as support for macros, but we won’t
cover those in this class.

C compilation is a multi-phase process; the preprocessor is run before typical
compilation (translation) runs.

https://en.cppreference.com/w/c/language/translation_phases

C Language Primer – Data Types

C has a variety of data types. We will only cover the subset required in our project.

We will start with numbers, booleans, and arrays.

https://en.cppreference.com/w/c/language/type

C Language Primer – Data Types – Numbers

We will focus on the integer types.

C provides multiple integer types that differ in their numeric ranges.

For example, unsigned char is guaranteed to be one byte on your system.

C Language Primer – Data Types – Numbers

Q If a byte is 8 bits on your system, what is unsigned char’s maximum value?

C Language Primer – Data Types – Numbers

The “unsigned” in unsigned char means the type represents positive integers
and 0, so the minimum value is 0.

Another type is unsigned int. If that type is 4 bytes on your system, its
maximum value is much larger than unsigned char, but it occupies 4 times as
much storage space.

C Language Primer – Data Types – Numbers

Signed versions of integer types also exist.

Signed versions occupy the same number of bytes as their unsigned counterparts,
but their range is different.

The most significant bit is used to store the sign.

Signed versions use the signed qualifier instead of unsigned.

unsigned char signed char
1111 1111 1111 1111

magnitude bits magnitude bitssign bit

C Language Primer – Data Types – Numbers

Q If a signed char is 8 bits on your system, what is its maximum value?

C Language Primer – Data Types – Numbers

Q If a signed char is 8 bits on your system, what is its minimum value?

C Language Primer – Data Types – Numbers

The reason the magnitudes of the maximum and minimum values differ is due to
the way negative numbers are encoded. We won’t go into detail here, but for more
information, look into two’s complement.

Understanding two’s complement is essential when working with binary
representations of numbers in C.

https://en.wikipedia.org/wiki/Two%27s_complement

C Language Primer – Data Types – Numbers

Q Given the following binary and decimal values for a signed char,

0b 0000 0010 – 2
0b 0000 0001 – 1
0b 0000 0000 – 0

what is the decimal value of 0b 1000 0000?

C Language Primer – Data Types – Numbers

The integer types that will be most helpful in our project are char, short, and
int.

See here for documentation on all of the integer types available in C.

https://en.cppreference.com/w/c/language/arithmetic_types

C Language Primer – Data Types – Numbers

As suggested earlier, the number of bits in a byte and the number of bytes in an
integer type are not guaranteed to be the same across platforms.

If your code depends on a specific number of bits or bytes, you may run into
portability issues.

C99 introduced fixed-width integer types. These guarantee the number of bits in an
integer type. These types are available in the stdint.h header file.

Examples: int8_t, uint8_t, int16_t, uint16_t, int32_t, etc.

C Language Primer – Data Types – Numbers

Signed numeric types can overflow or underflow without warning. Overflow and
underflow is undefined behavior. The same behavior on unsigned types is called
“wraparound” and is well-defined.

#include <stdint.h>

int main(void) {
 int8_t i = 127;
 i = i + 1;
 return 0;
}

$ gcc -Wall main.c
$

fn main() {
 let mut i: i8 = 127;
 i = i + 1;
}

$ rustc main.rs
error: this arithmetic operation will overflow
 --> main.rs:3:9
 |
3 | i = i + 1;
 | ^^^^^ attempt to compute
 | `i8::MAX + 1_i8`, which would
 | overflow

enable “all” warnings

C Language Primer – Booleans

Historically C had no first-class boolean type. Developers would typically use 0 as
false and some non-zero value (usually 1) as true.

C99 introduced a boolean support library which exposes true, false, and bool
for use in your program.

#include <stdbool.h>

int main(void) {
 bool a = true;
 bool b = false;
 bool c = 1 < 2; // true

 return 0;
}

C Language Primer – Arrays

Arrays are C’s built-in type for collections.

Arrays can only hold elements of a single type.

Arrays are contiguous, meaning that all elements of a single array exist
side-by-side in memory.

C Language Primer – Arrays

#include <stdbool.h>

int main(void) {
 // Storage for 5 integer elements.
 int arr1[5];

 // Storage for 3 uint8_t elements, initialized.
 uint8_t arr2[3] = {0, 70, 21};

 // Storage for 3 boolean elements, but the size is set by the initializer.
 bool arr3[] = {true, false, true};

 return 0;
}

C Language Primer – Arrays

Accessing individual array elements is done using the “array subscript operator,”
[]. This operator takes a single non-negative value and uses that as an index into
the array.

int main(void) {
 int a[] = {0, 1, 2, 3, 4};

 int first_element = a[0]; // value: 0

 int third_element = a[2]; // value: 2

 // Change the value of the 4th element.
 a[3] = 5;

 return 0;
}

C Language Primer – Arrays

Q What happens if you use a negative index or an index larger than the bounds of
the array?

int main(void) {
 int a[] = {0, 1, 2, 3, 4};

 int first_element = a[0]; // value: 0

 int third_element = a[2]; // value: 2

 // Change the value of the 4th element.
 a[3] = 5;

 return 0;
}

C Language Primer – Printing

C provides various ways to print information to the console. We will use printf.

#include <stdbool.h>

int main(void) {
 printf("foo\n");
 return 0;
}

This prints “foo” to standard output (stdout).

It also prints a newline (\n).

\n is an escape sequence, a way to encode special characters in the string literal.

C Language Primer – Printing

The f in printf stands for “formatted.” The string we provide to printf is the format
string.

Format strings feature format specifiers which control how data is printed.

#include <stdio.h>

int main(void) {
 int i = 2;
 char ch = 65;
 printf("i is %d, c is %c\n", i, ch);
 return 0;
}

C Language Primer – Printing

Q What does the following program print?

#include <stdio.h>

int main(void) {
 int i = 2;
 char ch = 65;
 printf("i is %d, c is %c\n", i, ch);
 return 0;
}

C Language Primer – Printing

The order of arguments following the format string must match the order of format
specifiers.

If you provide more arguments to print than format specifiers, the arguments that
have no corresponding specifier are ignored.

If you provide more specifiers than arguments following the format string, the
program behavior is undefined.

If the type of an argument to print does not match the expectations of the format
specifier controlling the printing, the behavior may be undefined.

C Language Primer – Printing

Q Is printing an int32_t using the %d format specifier portable? Why or why not?

C Language Primer – Functions

We’ve already seen examples of functions: main and printf.

Here’s a new, custom function.

int double_number(int a) {
 int n = a * 2;
 return n;
}

int main(void) {
 int number = 5;
 int doubled = double_number(number);
 return 0;
}

C Language Primer – Functions

Functions have signatures and implementations.

void as a parameter means the function has no parameters.

int double_number(int a) {
 int n = a * 2;
 return n;
}

int main(void) {
 int number = 5;
 int doubled = double_number(number);
 return 0;
}

C Language Primer – Functions

Q What happens if we move double_number below main?

int double_number(int a) {
 int n = a * 2;
 return n;
}

int main(void) {
 int number = 5;
 int doubled = double_number(number);
 return 0;
}

C Language Primer – Functions

We can place just the signature above main to let the compiler know that we will
implement double_number elsewhere.

This is called a forward declaration.
int double_number(int);

int main(void) {
 int number = 5;
 int doubled = double_number(number);
 return 0;
}

int double_number(int a) {
 int n = a * 2;
 return n;
}

C Language Primer – Functions

Q What will the following program print?

#include <stdio.h>

void add_one(int a) {
 a = a + 1;
}

int main(void) {
 int a = 0;
 add_one(a);
 printf("%d\n", a);
 return 0;
}

C Language Primer – Functions – Calling Convention

C is a “pass by value” (or “call by value”) language.

The called function gets copies of the caller’s arguments.

The caller’s arguments are preserved in the caller’s stack frame, and the called
function’s copies are stored in the called function’s stack frame.

The stack is a data structure in memory that stores scopes’ local variables.

C Language Primer – Functions – The Stack

Let’s study the evolution of the stack for a subset of code we recently saw.

int main(void) {
 int a = 0;
 add_one(a);
 // printf(...); etc.

(main)

stack

Set up space for main,
main is called.

(main)
 int a

(main)
 int a

(add_one)
 int a

(main)
 int a

Reserve space for main’s
variable a.

Set up space for add_one
and its parameter a. Call
add_one.

add_one returns, and its
stack is popped. We’re
back in main.

C Language Primer – Pointers

We’ve learned about arrays and how to access individual elements via indexing.

Pointers are simply indices into arbitrary memory.

Every variable is stored somewhere in memory at runtime and so has a memory
address.

You can get the address of a variable using the “address-of operator,” &.

The address-of operator returns a pointer.

A pointer in a type declaration is indicated by *.

C Language Primer – Pointers

#include <stdio.h>

int main(void) {
 int a = 0;
 int* b = &a;
 printf("%p\n", b);
 return 0;
}

This program may print 0x16d43f348.

C Language Primer – Pointers

#include <stdio.h>

int main(void) {
 int a = 0;
 int* b = &a;
 printf("%p\n", b);
 return 0;
}

Q If you run the below program multiple times, what does it print?

C Language Primer – Pointers

#include <stdio.h>

int main(void) {
 int a = 0;
 int* b = &a;
 *b = 1;
 printf("%d\n", a);
 return 0;
}

We can use pointers to modify the values at the memory addresses pointed to.

The above prints 1.

We changed the value of a indirectly via b, a pointer to a.

C Language Primer – Pointers

#include <stdio.h>

int main(void) {
 int a = 1;
 int* b = &a;
 int c = *b + 1;
 printf("%d\n", c);
 return 0;
}

The dereference operator, also *, converts a pointer to its underlying value.

The above prints 2.

C Language Primer – Pointers

#include <stdio.h>

void add_one(int* a) {
 *a = *a + 1;
}

int main(void) {
 int a = 0;
 add_one(&a);
 printf("%d\n", a);
 return 0;
}

With pointers, we can write functions that can change values in other scopes.

The above prints 1.

C Language Primer – Pointers

You can point to “nothing” by assigning NULL (or nullptr in C23) to a pointer.

Such a pointer is called a “null pointer.”

NULL is defined to be 0 or a pointer to address 0.

It is an error to dereference a null pointer.

The result of dereferencing a null pointer is platform-specific, but you will likely
encounter a “segmentation fault.”

More generally, it is an error to dereference an address that is not mapped into
your program’s memory space at runtime.

C Language Primer – Pointers

#include <stdio.h>

int* make_one(void) {
 int one = 1;
 return &one;
}

int main(void) {
 int* a = make_one();
 printf("%d\n", *a);
 return 0;
}

Q What does the following program do? Are there any bugs?

C Language Primer – Pointers – Pointer Arithmetic

When we printed a pointer, we saw a value such as 0x16d43f348.

This is just a (hexadecimal) number.

Changing the number changes what the pointer points at.

C supports mathematical operations on pointers, called pointer arithmetic:
1. Increment and decrement
2. Adding or subtracting integers from pointers
3. Subtracting one pointer from another to determine the number of elements in

a range of memory

Memory addresses count individual bytes, but pointer arithmetic adjusts pointers
by the number of bytes of their underlying type.

It’s easier to visualize with an example.

C Language Primer – Pointers – Pointer Arithmetic

#include <stdio.h>

int main(void) {
 int a = 0;
 int* b = &a;
 int* c = b + 1;
 printf("b, c: %p, %p\n", b, c);
 printf("sizeof(int): %d\n", sizeof(int));
 printf("c - b: %d\n", c - b);
 return 0;
}

$./a.out
b, c : 0x16f187348, 0x16f18734c
sizeof(int): 4
c - b : 1

C Language Primer – Pointers – Pointer Arithmetic

#include <stdio.h>

int main(void) {
 int a = 0;
 int* b = &a;
 int* c = b + 1;
 printf("b, c: %p, %p\n", b, c);
 printf("sizeof(int): %d\n", sizeof(int));
 printf("c - b: %d\n", c - b);
 return 0;
}

$./a.out
b, c : 0x16f187348, 0x16f18734c
sizeof(int): 4
c - b : 1

Q Why do the last digits of the
addresses b and c point to differ
by 4 and not 1?

Q Why is c - b 1?

C Language Primer – Pointers – Pointer Arithmetic

Q Aside: is there any problem
with dereferencing c?

The array subscript operator [] also works on pointers.

For example, when used on a pointer p as p[n], the operator automatically
dereferences the element referred to by p + n.

C Language Primer – Pointers – Pointer Arithmetic

int main(void) {
 int a[] = {0, 1, 2, 3, 4, 5};
 int* b = a;
 int c = b[3];
 return 0;
}

You can have pointers to pointers.

For example, int** is a pointer to a pointer to an int.

In theory you can have infinite levels of indirection, but in practice toolchains put
restrictions on the number of levels.

Many levels of indirection in your code is a complexity warning sign.

We will see practical examples of pointers to pointers later.

C Language Primer – Pointers – Pointers to Pointers

Strings are sequences of characters.

We will focus on byte strings containing ASCII characters.

Strings must be null-terminated in C, meaning the last character must be \0.

Such strings are called null-terminated byte strings.

String variables are typed as char*.

C Language Primer – Strings

#include <stdio.h>

int main(void) {
 char* str = "Hello world.\n";
 printf("%s", str);
 return 0;
}

C Language Primer – Strings

String literals do not need an explicit null terminator. The compiler adds them for
us.

Notice that we pass str, not *str, to printf. The %s format specifier expects a
pointer to char.

C Language Primer – Strings

If we dynamically create strings, we need to take care to add the null terminator
ourselves.

We will see how to dynamically create strings later.

String literals are read-only in C. We can only modify dynamically-created strings.

C Language Primer – Strings

As suggested by the type of the string pointer, char*, individual elements of a
string are chars.

We’ve already seen how to assign numeric values to chars. We can also assign
character literals.

int main(void) {
 char a = 'a';
 char null = '\0';
 char new_line = '\n';
 char capital_a = 65;
 return 0;
}

C Language Primer – Strings

Q How can we make 'B' using capital_a?

int main(void) {
 char a = 'a';
 char null = '\0';
 char new_line = '\n';
 char capital_a = 65;
 return 0;
}

C Language Primer – The Second Form of main

Earlier we showed the parameterless form of main.

There is another form that accepts command-line arguments.

int main(int argc, char** argv);

argc (argument count) is the number of command-line arguments received.

argv (argument vector) is a collection of command-line arguments received
represented as null-terminated byte strings. Most popular runtimes today pass the
program name as the first command-line argument automatically.

The collection itself is null-terminated.

C Language Primer – The Second Form of main

Given this program invocation:

$./my_prog 1 "c primer" +-

the contents of argv look as follows if
the runtime passes the program name
as the first command-line argument.

0x..680

value of
char** argv

0x..800

0x..808

0x..80b

0x..904

0x00

0x..680

0x..688

0x..690

0x..698

0x..6a0

"my_prog\0"

"1\0"

"c primer\0"

"+-\0"

char*

memory address value at address

po
in
ts
 t
o

points to

C Language Primer – Structures

C provides a way for users to define their own aggregate types called structures.

struct Position {
 int x;
 int y;
};

struct Player {
 char* name;
 int health_points;
 struct Position position;
};

int main(void) {
 struct Player player;
 return 0;
}

C Language Primer – Structures

When we create space on the stack for player via struct Player player, all
members have uninitialized values. We need to manually initialize them.

We can access members on structs using the “member access operator,”
sometimes called the “dot operator,” ..

// <Position and Player definitions here.>

int main(void) {
 struct Player player;
 player.name = "default name";
 player.health_points = 100;
 player.position.x = 0;
 player.position.y = 0;
 return 0;
}

C Language Primer – Structures

Such initialization is usually wrapped in a function so it can be reused.

// <Position and Player definitions here.>

struct Player player_init(char* name, int hp, int pos_x, int pos_y) {
 struct Player player;
 player.name = name;
 player.health_points = hp;
 player.position.x = pos_x;
 player.position.y = pos_y;
 return player;
}

int main(void) {
 struct Player p = player_init("default_name", 100, 20, 30);
 return 0;
}

C Language Primer – Structures

If you have a handle on a struct via a pointer, you can access the struct’s members
by using either the dereference operator or the “member access operator”
(sometimes called the “arrow operator”), ->.

#include <stdio.h>

// <Position and Player definitions here.>
// <player_init definition here.>

int main(void) {
 struct Player p = player_init("default_name", 0, 20, 30);
 struct Player* p_ptr = &p;
 printf("%s\n", (*p_ptr).name);
 printf("%d\n", p_ptr->health_points);
 return 0;
}

C Language Primer – Memory Allocation and Management

So far we talked about the stack and read-only memory where string literals are
stored. There is another important section of memory called the “heap.”

Stack frames are destroyed when their associated functions return. Memory on the
heap is independent of the stack and is allocated and destroyed explicitly by the
programmer.

Using the heap, we can allocate memory for any content we’d like and share that
memory with arbitrary scopes until we choose to deallocate the memory.

The C standard library provides various functions for dynamic memory
management. We will focus on malloc, calloc, and free.

This program uses malloc (“memory allocation”) to reserve space on the heap for
4 ints. malloc allocates bytes, so we need to do some math.

We call free to deallocate the memory. We set a to NULL to remind ourselves that
a does not currently point to any address allocated for our use.

#include <stdlib.h>

int main(void) {
 int* a = malloc(4 * sizeof(int));
 free(a);
 a = NULL;
 return 0;
}

C Language Primer – Memory Allocation and Management

malloc does not initialize memory. We can use calloc instead, which initializes
all allocated bytes to 0.

Here is an example of dynamically creating a string.

#include <stdlib.h>

int main(void) {
 char* str = calloc(10, sizeof(char));
 str[0] = 'c';
 str[1] = 'a';
 str[2] = 't';
 str[3] = '\0';
 free(str);
 return 0;
}

C Language Primer – Memory Allocation and Management

Q Is the highlighted line below necessary in this case to form a null-terminated
byte string?

#include <stdlib.h>

int main(void) {
 char* str = calloc(10, sizeof(char));
 str[0] = 'c';
 str[1] = 'a';
 str[2] = 't';
 str[3] = '\0';
 free(str);
 return 0;
}

C Language Primer – Memory Allocation and Management

Q Can you dynamically create strings on the stack? If so, how? If not, why not?

C Language Primer – Memory Allocation and Management

Q How would you allocate memory on the heap to store an instance of
Position?

struct Position {
 int x;
 int y;
};

C Language Primer – Memory Allocation and Management

Q How would you allocate memory on the heap to store an instance of Player?

struct Position {
 int x;
 int y;
};

struct Player {
 char* name;
 int health_points;
 struct Position position;
};

C Language Primer – Memory Allocation and Management

As you develop larger projects, you will want to split your code across multiple
source files.

Code is typically organized in header files and corresponding implementation files.

Header files have the .h file extension. Implementation files have the .c file
extension. This is not mandatory but is customary.

C Language Primer – Working With Multiple Source Files

Consider this example library that provides one function. Here is its header file,
my_lib.h.

#ifndef MY_LIB_H_
#define MY_LIB_H_

/**
 * @param a The number to add one to.
 * @return The sum of @c a and 1.
 */
int add_one(int a);

#endif // MY_LIB_H_

C Language Primer – Working With Multiple Source Files

Here is its corresponding implementation file, my_lib.c.

#include "my_lib.h"

int add_one(int a) {
 return a + 1;
}

C Language Primer – Working With Multiple Source Files

To make an executable, you’ll need a main function. If this is implemented in
main.c, then the compiler invocation may look like:

$ clang main.c my_lib.c -I./

C Language Primer – Working With Multiple Source Files

The -I./ portion says to add ./ to the path to search for include files.

As programs grow to contain many source files across many directories, the
compiler invocation becomes unwieldy to create manually. Build systems help by
generating the invocation for you.

We will discuss build systems more later.

C Techniques Primer

1. const
2. Pragmas
3. Data-Oriented Programming
4. Design by Contract
5. Testing

C Techniques Primer – const

The const keyword in the C language makes variables read-only. Use const
wherever possible to help ensure you’re only modifying what you want to modify.
Note that it is not foolproof, and note that meaning is slightly tricky when used with
pointers.

See this documentation for more.

https://en.cppreference.com/w/c/language/const

We learned about include guards in header files. There is a non-standard but
widely supported alternative form for header guards.

You can replace all of the following
#ifndef MY_MODULE_FILE_H_
#define MY_MODULE_FILE_H_

// ...

#endif MY_MODULE_FILE_H_

C Techniques Primer – Pragmas

with simply #pragma once at the top of the file.

C is an “imperative” language, not an object-oriented one.

While C does have structures, such types do not support methods like classes do
in other languages.

C also does not support namespacing.

One common way of associating a group of functions with a custom data type is by
prefixing function names with the name of the custom type the functions operate
on and taking an instance of the custom type as the first parameter.

C Techniques Primer – Data-Oriented Programming

#pragma once

#include <stdbool.h>
#include <stddef.h>

struct Buffer {
 char* _buffer; // A place to store the data
 size_t _element_size; // The byte size of an element in @c _buffer
 size_t _capacity; // The maximum number of elements @c _buffer can hold
 size_t _size; // The current number of elements in @c _buffer
};

struct Buffer buffer_new(size_t num_elements, size_t sizeof_element);
bool buffer_push(struct Buffer* b, char* element);
char* buffer_at(struct Buffer* b, size_t index);
void buffer_free(struct Buffer* b);

C Techniques Primer – Data-Oriented Programming

Design by Contract is a software construction technique that formalizes software
interfaces with so-called “contracts.”

Contracts feature pre-conditions, post-conditions, and invariants.

Pre-conditions are things that must happen before an interface is used.

Invariants are properties that must be true about the data coming into an interface.

Post-conditions are promises that the interface makes to the user about the
resultant state of the runtime.

C Techniques Primer – Design by Contract

/** A struct containing something stateful. */
struct StateThing {
 // ...
};

/**
 * Initialize the @c StateThing library.
 *
 * Preconditions:
 * - @c The runtime must not have called @c statething_library_init already.
 *
 * Postconditions:
 * - It is invalid to call @c statething_library_init again in the same
 * runtime.
 */
void statething_library_init (void);

C Techniques Primer – Design by Contract

/** A struct containing something stateful. */
struct StateThing {
 // ...
};

// void statething_library_init(void);

/**
 * Perform foo with a @c StateThing instance.
 *
 * Preconditions:
 * - @c statething_library_init has been called in the runtime.
 *
 * @param st The @c StateThing instance to operate on. Cannot be @c NULL .
 * @return Some data resulting from doing foo. The caller owns the memory.
 */
char* statething_foo(struct StateThing* st);

C Techniques Primer – Design by Contract

If an interface is used but its contract is not fulfilled, the contract is said to be
broken or violated.

In this case, the program enters a (user-defined) invalid state.

If the API exposes error information, perhaps an error is raised. Or perhaps the
implementation chooses to terminate the runtime. The behavior should be
documented somewhere.

C Techniques Primer – Design by Contract

Q If your function’s contract is violated, is it okay to terminate the program?

C Techniques Primer – Design by Contract

Tests are written as additional small programs that exercise your code.

It is therefore helpful to organize your code so that as much as possible can be
used as a library. This way test programs can import and exercise your code.

Most modern build systems have first-class support for registering binaries as
tests, for example CMake’s add_test and Bazel’s cc_test.

Tests will often make use of assert (from assert.h) to simply terminate the
program if some expectation is not met in the test.

C Techniques Primer – Testing

You may want to reuse variable names in a single test application but find
reassignment difficult, such as when assigning a new array to a variable.

You can create nested “blocks” to help here. A block creates a local, nested scope.

C Techniques Primer – Testing

int main(void) {
 {
 int arr[] = {0, 70, 21};
 // Do something with arr.
 }

 {
 int arr[] = {0, 70, 21, 50, 99};
 // Do something else with a different instance of arr.
 }

 return 0;
}

C Tooling Primer

1. Compiler Flags
2. Build Systems
3. Test Frameworks
4. Documentation Generators
5. Debuggers
6. Static Analyzers
7. Sanitizers

C Tooling Primer – Compiler Flags

Our compilers have a variety of checks and diagnostics that help us catch bugs.

-Wall: enable “all” warnings.

-Wextra: enable even more warnings not included in -Wall.

-Werror: treat warnings as errors; use with discretion.

-Wconversion: warn for any conversion that may change a value.

-g3: emit debugging symbols, in particular more information than -g.

-Wno-<option-name> to disable a particular warning.

C Tooling Primer – Build Systems

Compiler invocations become complicated as projects grow to many source files.

Build systems help us organize our code and manage compiler invocations.

There are many popular build systems. Here we’ll focus on Bazel.

Bazel is complicated, and the learning curve for the complex features is steep, but
simple project organization and compilation is straightforward.

C Tooling Primer – Build Systems – Bazel

Assume the following source tree:

bin/
 |_ main.c
lib/
 |_ foo/
 |_ foo.c
 |_ foo.h
 |_ tests/
 |_ test_foo.c

The project will have two executables (one is a test) and one library.

We first mark the root of the workspace by adding
an empty WORKSPACE file in the project root.

bin/
 |_ main.c
lib/
 |_ foo/
 |_ foo.c
 |_ foo.h
 |_ tests/
 |_ test_foo.c
WORKSPACE

C Tooling Primer – Build Systems – Bazel

To create a build target for our library “foo,” we
place a BUILD.bazel file in lib/foo/.

Its contents are as follows.

cc_library(
 name = "libfoo",
 srcs = ["foo.c"],
 hdrs = ["foo.h"],
 visibility = ["//visibility:public"],
)

bin/
 |_ main.c
lib/
 |_ foo/
 |_ BUILD.bazel
 |_ foo.c
 |_ foo.h
 |_ tests/
 |_ test_foo.c
WORKSPACE

C Tooling Primer – Build Systems – Bazel

To create a build target for our test, in the same
BUILD.bazel file, we add:

cc_library(
 name = "libfoo",
 srcs = ["foo.c"],
 hdrs = ["foo.h"],
 visibility = ["//visibility:public"],
)

cc_test(
 name = "test_libfoo",
 srcs = ["tests/test_foo.c"],
 deps = [":libfoo"],
 timeout = "short",
)

bin/
 |_ main.c
lib/
 |_ foo/
 |_ BUILD.bazel
 |_ foo.c
 |_ foo.h
 |_ tests/
 |_ test_foo.c
WORKSPACE

C Tooling Primer – Build Systems – Bazel

Lastly, to create a build target for our main
executable, we add a new BUILD.bazel file in
bin/, and its contents are as follows:

cc_binary(
 name = "main",
 srcs = ["main.c"],
 deps = ["//lib/foo:libfoo"],
)

bin/
 |_ BUILD.bazel
 |_ main.c
lib/
 |_ foo/
 |_ BUILD.bazel
 |_ foo.c
 |_ foo.h
 |_ tests/
 |_ test_foo.c
WORKSPACE

C Tooling Primer – Build Systems – Bazel

We can build our entire project by issuing bazel build //....

We can run our main binary issuing bazel run //bin:main.

We can run all of our tests by issuing bazel test //....

We can run a specific test by issuing bazel test //lib/foo:test_libfoo.

If a test failure occurs, Bazel may hide the failure output. You can show the output
by passing --test_output=errors to bazel test.

If you need to build binaries with debugging symbols, pass
--strip=never -c dbg to bazel build.

C Tooling Primer – Build Systems – Bazel

If you need to build against a specific language version, create a .bazelrc file in
the same directory as WORKSPACE and add --copt=-std=c23 to the build
profile:
build --copt=-std=c23

You can put other compiler command-line arguments in that file as well. For each
argument, you need an additional --copt=.

Bazel suggests that if your option applies only to C and not to C++, you should use
--conlyopt=.

The more scalable way to set the language version is to use a formal toolchain
configuration. We will not cover that here.

C Tooling Primer – Build Systems – Bazel

Note the structure of the source code in the
example project.

The header files and implementation files are next
to each other.

This is not usually the case on your system for
installed libraries.

bin/
 |_ BUILD.bazel
 |_ main.c
lib/
 |_ foo/
 |_ BUILD.bazel
 |_ foo.c
 |_ foo.h
 |_ tests/
 |_ test_foo.c
WORKSPACE

C Tooling Primer – Build Systems – Bazel

Test frameworks support creating and executing tests and reducing boilerplate.

Some options for C are

1. Unity
2. µnit
3. check
4. criterion

Another popular option is GoogleTest. GoogleTest is a C++ test framework, but
you can use it to test your C functions (in a C++ context) as well. You will need to
make your C functions callable from C++ or vice versa; see here for more.

C Tooling Primer – Test Frameworks

https://github.com/ThrowTheSwitch/Unity
https://nemequ.github.io/munit/#
https://libcheck.github.io/check/
https://github.com/Snaipe/Criterion
http://google.github.io/googletest/quickstart-bazel.html
https://isocpp.org/wiki/faq/mixing-c-and-cpp

The most popular documentation generator for C and C++ projects is Doxygen.

Search online for how to set it up for your project.

Note that other options exist, such as Sphinx, but typically they still interface with
Doxygen during the build process.

C Tooling Primer – Documentation Generators

Two of the more popular debuggers are gdb (GNU debugger) and lldb
(Low-Level Debugger, in the LLVM family).

There are plenty of online tutorials on how to use these debuggers. Focus on:

1. Breakpoints
2. Next (go to next instruction, skip over function calls)
3. Step (go to next instruction, enter function calls)
4. Printing values
5. Printing the stack
6. Moving up and down the stack
7. Printing source code around the line the debugger is currently stopped on

C Tooling Primer – Debuggers

Static analyzers are programs that evaluate your source code to detect coding
style violations and potentially bugs in your implementation.

Among the most popular is clang-tidy.

C Tooling Primer – Static Analyzers

Sanitizers are compiler features that add special information into your compiled
programs to help find issues at runtime. They are very useful, but they also impose
some time and memory overhead.

Two popular sanitizers relevant to us are ubsan (“u-b-san,” undefined behavior
sanitizer), and asan (“a-san,” address sanitizer).

These are available for at least GCC and Clang, but you may need to reconfigure
your environment or even build your toolchain from source to enable advanced
features. There are plenty of tutorials on the web.

Enable these sanitizers via: -fsanitize=address -fsanitize=undefined.

C Tooling Primer – Sanitizers

Another popular sanitizer is valgrind. The memcheck feature is particularly
well-known.

Valgrind will detect memory issues such as leaks by examining your program at
runtime.

Look up the valgrind documentation for usage instructions.

C Tooling Primer – Sanitizers

Project Specification

1. Stack Machine
2. Language Specification
3. Code Generator
4. Tasks
5. Hints

The stack machine supports the following instructions. Instructions are 16 bits
wide. The first 2 bits counting from the most significant bit are the instruction type.
The remaining 14 bits are the instruction data.

Project Specification – Stack Machine – Specification

Instruction Type (bits 15, 14) Description

0b00 Store a positive integer. The last 14 bits are the integer.

0b01 Store a negative integer. The last 14 bits are the
positive integer. (Assume the machine converts the
positive integer into a negative integer when storing the
value.)

0b10 Perform an opcode-based instruction. (See next slide.)

0b11 Unsupported.

Opcodes for opcode-based instructions are as follows. The opcode value starts
from the least significant bit.

Project Specification – Stack Machine – Specification

Opcode (bits 13 - 0) Description

0x0 Halt. Stop executing a program.

0x1 Add. Pop the top two values off the stack, add them, and push the result
back onto the stack.

0x2 Subtract. Pop the to two values off the stack, subtract the first popped value
from the second, and push the result back onto the stack.

0x3 Multiply. Pop the top two values off the stack, multiply them, and push the
result back onto the stack.

0x4 Integer division. Pop the top two values off the stack, divide the first popped
value into the last popped value, and push the result back onto the stack.

The next slide shows an API for the stack machine.

Project Specification – Stack Machine – API

/**
 * @return A new instance of a VM.
 */
struct VM vm_new(void);

/**
 * Load a program into a VM.
 *
 * @param vm The virtual machine to load the program into.
 * @param program An array of instructions.
 * @param program_length The number of instructions in @c program.
 */
void vm_load_program(struct VM* vm, uint16_t* program, size_t program_length);

/**
 * Run a loaded program.
 *
 * @param vm The VM containing the program to run.
 */
void vm_run(struct VM* vm);

/**
 * Get the last value pushed to the VM's stack.
 *
 * @param vm The VM holding the stack to inspect.
 * @return The last value pushed to the VM's stack.
 */
int16_t vm_peek(struct VM* vm);

Project Specification – Stack Machine – API

The command-line interface to the stack machine is a program that takes a single
command-line argument which is a binary file containing bytecode to run. The
program instantiates a virtual machine, runs the program in the machine, and
when the program finishes, it prints the result of the last computation (add, sub,
mul, div) performed.

Project Specification – Stack Machine – CLI

The language specification for this project is the following simple grammar.

Project Specification – Language Specification

expression: (number | operator)*
number: [+|-]?[0-9]+
operator: ('+' | '-' | '*' | '/')

Programs are expressions written in postfix notation. Whitespace separates
numbers and operators and is otherwise ignored.

The next slide features some example programs.

https://en.wikipedia.org/wiki/Reverse_Polish_notation

An empty source file is a valid program. It simply halts.

Project Specification – Language Specification

0

The program above pushes 0 to the stack and halts.

0 -20 + 5
/

The program above pushes 0 to the stack, pushes -20 to the stack, performs
addition (pops -20, pops 0, adds them, stores the result on the stack), pushes 5 to
the stack, and then performs integer division. The final state of the stack is -4.

The above program pushes 1 to the stack and then attempts addition.

There are not enough values on the stack to perform addition. The virtual machine
behavior would be undefined.

Project Specification – Language Specification

1 +

The code generator is a command-line program that takes a single command-line
argument which is a path to a file containing source code. The tool converts the
source code into bytecode and writes the bytecode to a file in the current working
directory.

The code generator does not need to make determinations about whether a
program would cause a virtual machine to enter an undefined or error state. For
example, the code generator can still emit code for the previous program 1 + even
though the virtual machine will enter an undefined state.

Project Specification – Code Generator

1. Implement the VM API.
a. You are free to modify and extend the API as you please.
b. The API may have issues (ex: missing documentation or insufficient

information in function signatures to handle errors).
2. Implement the VM CLI.
3. Implement the code generator.

Project Specification – Tasks

The slides before this do not cover everything you need to elegantly implement the
project.

The slides after provide hints in the form of code snippets, additional techniques,
and design notes to help you in your implementation.

Project Specification – Hints

size_t is often used in place of int or unsigned int to count the number of
bytes in some collection. See its documentation for more.

A stack-based virtual machine uses a stack as its memory space. In C, a stack is
easily implemented with an array and an index into the array keeping track of the
top element.

When processing instructions, consider implementing a simplified version of the
“instruction cycle,” namely fetch, decode, and execute. fetch gets the next
instruction to process. In our case, decode breaks the instruction into two parts:
instruction type and instruction data. execute actually “runs” the instruction,
updating the state of the virtual machine’s stack.

Project Specification – Hints – Virtual Machine – API

https://en.cppreference.com/w/c/types/size_t
https://simple.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Instruction_cycle

The format specifiers for fixed-width integer types are in the table for the “fprintf
family of functions” here. These format specifiers are strings, so you can create a
format string using string concatenation, like:
printf("top of stack: %" PRId16 "\n", vm_top_of_stack(vm));

You will need to use for and maybe while loops.

You will need to use if.

You will likely need to use the switch statement.

Project Specification – Hints – Virtual Machine – API

https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/language/for
https://en.cppreference.com/w/c/language/while
https://en.cppreference.com/w/c/language/if
https://en.cppreference.com/w/c/language/switch

You will likely have to use bitwise operators, such as bitwise AND.

For example, here is how to test whether the 3rd bit (from 0) in a uint8_t is set.

bool is_third_bit_set(uint8_t i) {
 uint8_t mask = 0x08; // binary: 0000 1000
 bool is_set = i & mask; // if set, result is non-zero (true)
 return is_set;
}

Project Specification – Hints – Virtual Machine – API

https://en.cppreference.com/w/c/language/operator_arithmetic

You may have to use bit shifting, such as bitwise right shift.

For example, here is how to shift the top 2 bits to the position of the bottom 2 bits
in a uint8_t.

void shift_down(uint8_t i) {
 i = i >> 6; // i is shifted 6 bits right,
 // so `bbxx xxxx` becomes `0000 00bb`.
 // The bits that "fall off" the right are lost.
 // The bits that shift in from the left are 0.
 // Note that right shift works differently for signed types,
 // remember the sign bit!
}

Project Specification – Hints – Virtual Machine – API

https://en.cppreference.com/w/c/language/operator_arithmetic

The string.h header file includes various functions to work with memory, such
as performing memory copies. See this documentation for more.

Project Specification – Hints – Virtual Machine – API

https://en.cppreference.com/w/c/string/byte/memcpy

Project Specification – Hints – Virtual Machine – CLI

File IO in C is done through a subset of the API provided in stdio.h.

Study at least fopen, fread, fwrite, and fclose.

When you want to read and write binary files, take note of fopen’s file access flag
'b'.

Opening a file returns a file handle of type FILE*, a file identifier that you use in
calls to other parts of the file IO API.

When you’re done reading or writing to a file, call fclose. This flushes (writes)
any remaining content of the backing buffer to the file and then releases the file
management resources back to the operating system.

https://en.cppreference.com/w/c/io

Project Specification – Hints – Virtual Machine – CLI

When reading content from a file, you may want to prepare a buffer beforehand
that is large enough to store the contents of the file. Here is how you can
determine the number of bytes in a binary file. Error handling is not shown.

// Open a file for reading in binary mode.
FILE* fp = fopen("file_name", "rb");
// Move file position indicator to the end of the file.
fseek(fp, 0, SEEK_END);
// Get the number of bytes between start of file and position indicator.
size_t num_bytes = (size_t) ftell(fp);
// Move file position indicator back to the beginning.
rewind(fp);
// Make a buffer of size num_bytes.
char* bytes = malloc(...);
// Clean up the file.
fclose(fp);

Project Specification – Hints – Code Generator

As we saw in an earlier slide, code generation often involves translating input
source code into assembly and then assembly into machine code or bytecode.

For the sake of simplicity and time, we will skip assembly (although you can
implement an assembly language if you’d like).

Our code generator may be implemented in two broad parts: a lexical analyzer and
a code generator.

A lexical analyzer reads raw source code and returns a collection of tokens. This is
called “tokenization,” and the thing that does it is called a “tokenizer.”

The code generator then processes the tokens and emits bytecode.

Project Specification – Hints – Code Generator

Tokens are strings, and our tokenizer returns a collection of tokens. If individual
tokens are typed as char*, the collection may be typed as char**.

Consider the example program 0 -20 +.

Because our language is so simple, it turns out that each non-whitespace
character is a part of a token. The tokens in this case are ["0", "-20", "+"].

It turns out each of our tokens corresponds directly to a machine instruction:

1. 0 : push positive number to the stack
2. -20: push negative number to the stack
3. + : opcode based instruction

Project Specification – Hints – Code Generator

If tokens are strings, how much space should we reserve for each string?

Let’s consider the limitations of our VM. Instructions are 16 bits, and a number’s
magnitude is stored in 14 bits. Consider the maximum and minimum decimal value
representable in 14 bits.

When allocating memory for your token, don’t forget to allocate space for the sign
character and the null terminator.

Project Specification – Hints – Code Generator

You will find string operations useful. The API for working with strings in C is broad.
See here for a list of functions.

You may particularly find strcmp, strlen, and atoi useful.

You can test individual characters in a string directly. For example, to find if the
letter a is the third element (counting from 0) in a char* str: str[3] == 'a'.

https://en.cppreference.com/w/c/string/byte
https://en.cppreference.com/w/c/string/byte/strcmp
https://en.cppreference.com/w/c/string/byte/strlen
https://en.cppreference.com/w/c/string/byte/atoi

Project Specification – Hints – Code Generator

Here is an API idea for a lexer library:

/**
 * Tokenize source code.
 *
 * @p source A pointer to the source to tokenize. Cannot be @c NULL.
 * @p num_bytes The number of bytes in the @c source buffer.
 * @return A pointer to a null-terminated collection of tokens represented
 * as null-terminated strings. The caller must free the collection
 * using @c lexer_free_tokens .
 */
char** lexer_tokenize(char* source, size_t num_bytes);

/**
 * Free the collection of tokens.
 *
 * @p tokens A collection of tokens; must have been prepared by
 * @c lexer_tokenize.
 */
void lexer_free_tokens(char** tokens);

Project Specification – Hints – Code Generator

Here is an API idea for a code generator library:

/**
 * Generate bytecode from a collection of tokens.
 *
 * @p tokens A collection of tokens to generate bytecode from.
 * @return Bytecode. The caller must clean the memory up using
 * @c code_gen_free_bytecode when done with the bytecode.
 */
uint16_t* code_gen_generate_bytecode(char** tokens);

/**
 * @p bytecode The bytecode to free.
 */
void code_gen_free_bytecode(uint16_t* bytecode);

